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Abstract

Laminar ~ow heat transfer in a vertical circular duct is investigated by taking into account both viscous dissipation
and the e}ect of buoyancy[ The temperature on the duct wall is considered as uniform and the velocity _eld is assumed
to be parallel[ A perturbation method is employed to solve the momentum balance equation and the energy balance
equation[ The radius of convergence of the perturbation series is evaluated by means of DombÐSykes plots[ A comparison
with the velocity and temperature pro_les in the case of laminar forced convection with viscous dissipation is performed
in order to point out the e}ect of buoyancy[ The case of convective boundary conditions is also discussed[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

Nomenclature

Bi �heR9:k\ Biot number
Br Brinkman number de_ned by equation "15#
cp speci_c heat at constant pressure
` gravitational acceleration
Gr �7R2

9`bDt:n1\ Grashof number
he external convection coe.cient
j non!negative integer number
k thermal conductivity
M mass ~ow rate
M9 �pk:"3`b#\ reference mass ~ow rate
n non!negative integer number
Nu Nusselt number de_ned by equation "13#
p pressure
P �p¦rb`X\ di}erence between the pressure and the
hydrostatic pressure
r �R:R9\ dimensionless radial coordinate
R radial coordinate
Re �1R9Um:n\ Reynolds number
R9 radius of the tube
Sn partial sum de_ned by equation "46#
T temperature
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Tb bulk temperature
Te reference temperature of the external ~uid
T9 wall temperature
u �U:Um\ dimensionless axial velocity
U axial component of the velocity _eld
Um mean axial velocity
U velocity _eld
X axial coordinate[

Greek symbols
a �k:"rbcp#\ thermal di}usivity
b coe.cient of thermal expansion
DT �mU1

m:k\ reference temperature di}erence
h �"Tb−T9#:DT\ temperature di}erence ratio
he �"Tb−Te#:DT\ external temperature di}erence ratio
u �"T−Tb#:DT\ dimensionless temperature
l � −"dP:dX#R1

9:"mUm#\ dimensionless pressure drop
m dynamic viscosity
n �m:rb\ kinematic viscosity
J �Gr:Re\ dimensionless parameter
r mass density
rb value of r for T � Tb[

0[ Introduction

Several papers deal with the e}ect of frictional heating
on the laminar forced convection in circular tubes[ One
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of the earliest investigations on this subject can be found
in the paper by Brinkman ð0Ł[ In this paper\ the e}ect of
viscous dissipation is analyzed with reference to thermally
developing forced convection in a pipe either with a uni!
form boundary temperature or with an insulated bound!
ary[ Ou and Cheng ð1Ł present a solution for the tem!
perature _eld in the thermal entrance region of a circular
duct with a uniform boundary heat ~ux[ Lin et al[ ð2Ł
obtain the temperature _eld and the local Nusselt number
for thermally developing forced convection in a pipe with
convective boundary conditions[ Moreover\ the tem!
perature _eld and the local Nusselt number are deter!
mined for thermally developing heat transfer by Basu
and Roy ð3Ł\ both in the case of a uniform boundary heat
~ux and in the case of a uniform boundary temperature[
One of the most interesting results pointed out in refs[ ð2\
3Ł is that\ both for convective boundary conditions and
for a uniform boundary temperature\ the Nusselt number
for laminar and thermally developed forced convection
in a circular tube is 37:4 � 8[5[ Obviously\ this result
holds whenever frictional heating is taken into account\
even if the Brinkman number is very small[ As a conse!
quence\ the viscous dissipation e}ect can never be
neglected in the evaluation of the Nusselt number in the
thermally developed region[ In fact\ as is well known\ in
the absence of viscous dissipation\ the thermally
developed value of the Nusselt number is 2[5457 for uni!
form boundary temperature ð4Ł\ while it depends on the
Biot number for convective boundary conditions ð5\ 6Ł[

The aim of the present paper is to extend the results
for the fully developed region obtained in refs[ ð2\ 3Ł\ by
taking into account the e}ect of buoyancy[ Indeed\ for
steady and laminar mixed convection in a vertical circular
tube\ the momentum and energy balance equations are
coupled with each other and the viscous dissipation term
in~uences not only the temperature _eld but also the
velocity _eld[

In the literature\ several studies on the in~uence of
frictional heating in free convection are available as\ for
instance\ the papers by Gebhart ð7Ł\ Turcotte et al[ ð8Ł
and Soundalgekar et al[ ð09Ł[ Moreover\ some papers deal
with the internal mixed convection with viscous dissi!
pation[ For instance\ Iqbal et al[ ð00Ł consider the fully!
developed combined forced and free convection in a ver!
tical circular tube with a uniform boundary heat ~ux[
These authors employ three di}erent mathematical tech!
niques for the solution of the coupled momentum and
energy balance equations] an extended Frobenius
method\ the Galerkin method and the RungeÐKutta
method[ Rokerya and Iqbal ð01Ł analyze mixed con!
vection in a vertical annular duct with a uniform heat
~ux either on the internal surface or on the external
surface[ They obtain the velocity pro_les and the tem!
perature pro_les by the RungeÐKutta fourth!order
method[ More recently\ Barletta ð02Ł and Zanchini ð03Ł
have investigated the e}ect of viscous dissipation for

mixed convection in a parallel!plate vertical channel[ In
particular\ both the case of symmetric or asymmetric
temperatures prescribed at the channel walls ð02Ł and the
case of convective boundary conditions ð03Ł have been
studied[ In these papers\ a perturbation method is
employed to solve the momentum balance and energy
balance equations[

To the author|s knowledge\ no solution of the problem
of mixed convection with viscous dissipation in a vertical
circular duct with uniform boundary temperature is
available in the literature[ In the present paper\ this prob!
lem will be solved by means of a perturbation method[
In particular\ the velocity and temperature pro_les will
be expressed as perturbation series with respect to a
dimensionless parameter which accounts for the
buoyancy e}ect[

1[ Formulation of the problem and governing equations

Let us consider a Newtonian ~uid which steadily ~ows
in an in_nitely long vertical tube with radius R9[ The ~ow
is assumed to be laminar and parallel\ i[e[ the only non!
vanishing component of the velocity _eld U is the axial
component U[ The temperature _eld on the boundary
R � R9 is uniform with a value T9[ As it is shown in Fig[
0\ the axial coordinate X is directed upward\ i[e[ it has a
direction opposite to the gravitational acceleration
vector[ Since only the axial component of U is non!zero\
the mass balance equation ensures that

1U
1X

� 9[ "0#

As a consequence of equation "0#\ U depends only on the
radial coordinate R[ Let us assume the equation of state

Fig[ 0[ Drawing of the system[
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r � rb ð0−b"T−Tb#Ł "1#

as well as the Boussinesq approximation[ In equation
"1#\ the reference temperature is the bulk temperature Tb

de_ned as

Tb �
1

UmR1
9
g

R9

9

UTR dR "2#

where the mean velocity Um is given by

Um �
1

R1
9
g

R9

9

UR dR[ "3#

Then\ the axial and radial components of the momentum
balance equation can be written as ð04Ł

b`"T−Tb#−
0
rb

1P
1X

¦
n

R
d

dR 0R
dU
dR1� 9 "4#

1P
1R

� 9 "5#

where P � p¦rb`X is the di}erence between the pressure
and the hydrostatic pressure[ As a consequence of equa!
tion "5#\ P depends only on the axial coordinate X[ Equa!
tion "4# yields

1T
1X

�
dTb

dX
¦

0
b`rb

d1P

dX1
[ "6#

Equation "6# implies that 1T:1X does not depend on R[
Since 1T:1X is zero at the boundary R � R9\ then 1T:1X
vanishes everywhere and the temperature T depends only
on R[ Therefore\ equation "2# implies that Tb does not
depend on X and equation "6# allows one to conclude
that

d1P

dX1
� 9 "7#

i[e[ that dP:dX is a constant[ The energy balance equation
can be written as ð04Ł

a

R
d

dR 0R
dT
dR1¦

n

cp 0
dU
dR1

1

� 9[ "8#

The boundary conditions on the velocity U and on the
temperature T are

U"R9# � 9\ T"R9# � T9[ "09#

Moreover\ both U and T must not be a}ected by singu!
larities at R � 9[ This condition can be expressed as

dU
dRbR�9

� 9\
dT
dRbR�9

� 9[ "00#

Note that\ as a consequence of equations "1#Ð"3#\ the
mass ~ow rate M can be expressed as

M � 1p g
R9

9

rUR dR

� 1prb g
R9

9

UR dR−1prbb g
R9

9

"T−Tb#UR dR

� 1prb g
R9

9

UR dR � pR1
9rbUm[ "01#

Let us de_ne the dimensionless quantities

u �
U
Um

\ u �
T−Tb

DT
\ r �

R
R9

\

l � −
R1

9

mUm

dP
dX

\ Gr �
7R2

9`bDT

n1
\ Re �

1R9Um

n
\

h �
Tb−T9

DT
\ J �

Gr
Re

"02#

where the reference temperature di}erence DT is given
by

DT �
mU1

m

k
[ "03#

Although Gr is always positive\ Re and J can be either
positive or negative[ In particular\ in the case of upward
~ow "Um × 9#\ both Re and J are positive\ while\ for
downward ~ow "Um ³ 9#\ these dimensionless par!
ameters are negative[ As a consequence of equations "02#
and "03#\ equations "4# and "8#Ð"00# can be rewritten as

0
r

d
dr 0r

du
dr1� −

J
3

u−l "04#

0
r

d
dr 0r

du

dr1� −0
du
dr1

1

"05#

u"0# � 9\ u"0# � −h "06#

du
drbr�9

� 9\
du

drbr�9

� 9[ "07#

Moreover\ equations "2#\ "3# and "02# yield

g
0

9

uur dr � 9 "08#

g
0

9

ur dr �
0
1

[ "19#

For any prescribed value of the dimensionless parameter
J\ equations "04#Ð"19# allow one to determine the func!
tions u"r# and u"r# as well as the constants l and h[
In particular\ it is easily veri_ed that the choice J � 9
corresponds to the absence of buoyancy forces\ i[e[ to
forced convection[

As a consequence of equations "08# and "19#\ equation
"04# yields

g
0

9

u
d
dr 0r

du
dr1 dr � −

l

1
[ "10#

By employing equations "06#\ "07# and an integration by
parts\ one can rewrite equation "10# in the form
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g
0

9

r 0
du
dr1

1

dr �
l

1
[ "11#

Then\ as a consequence of equations "05# and "07#\ equa!
tion "11# yields

du

drbr�0

� −
l

1
[ "12#

The Nusselt number is de_ned as

Nu 0
1R9

T9−Tb

dT
dR bR�R9

[ "13#

Equations "02#\ "06# and "12# imply that equation "13#
can be rewritten as

Nu �
1

u"0#
du

drbr�0

�
l

h
[ "14#

Moreover\ the Brinkman number is de_ned as

Br 0
mU1

m

kðT"9#−T9Ł
"15#

so that equations "02#\ "03# and "06# yield

Br �
0

u"9#¦h
[ "16#

If the condition of uniform wall temperature T9 is
accomplished by an external convection with a ~uid hav!
ing a reference temperature Te and a heat transfer
coe.cient he\ then the heat ~ux per unit area at R � R9

is given by

−k
dT
dR bR�R9

� he "T9−Te#[ "17#

As a consequence of equations "02# and "12#\ equation
"17# can be rewritten as

he � h¦
l

1Bi
"18#

where the Biot number is given by Bi � heR9:k\ while he

is a dimensionless parameter such that he �"Tb−Te#:DT[
Obviously\ in the limit Bi : �\ equation "18# yields
h � he\ so that the prescribed reference temperature of
the external ~uid Te coincides with the wall temperature[
Then\ in the limit Bi : �\ the convective boundary con!
dition collapses to the boundary condition of a prescribed
wall temperature[ The mixed convection problem with a
convective boundary condition can be solved as follows[
First\ for the given value of J\ equations "04#Ð"19# yield
the functions u"r#\ u"r# as well as the constants l and h[
Then\ for the given value of Bi\ equation "18# yields the
value of he[ As a consequence\ u"r#\ u"r#\ l and h are
independent of Bi[ Moreover\ on account of equations
"14# and "16#\ also the values of Nu and Br are indepen!
dent of the Biot number and\ hence\ they coincide with
the values for Bi : �\ i[e[ for a prescribed wall tempera!
ture[ Therefore\ the fully developed Nusselt number is
independent of Bi not only in the case of forced convec!

tion\ as is shown in ref[ ð2Ł\ but also in the case of mixed
convection[

2[ Perturbation series solution

In this section\ the perturbation method which leads
to a solution of equations "04#Ð"19# is described[

Let us expand the functions u"r#\ u"r# and the constants
l and h as power series in the parameter J\ namely

u"r# � u9"r#¦u0"r#J¦u1"r#J1¦= = = � s
�

n�9

un"r#Jn "29#

u"r# � u9"r#¦u0"r#J¦u1"r#J1¦= = = � s
�

n�9

un"r#Jn "20#

l � l9¦l0J¦l1J1¦= = = � s
�

n�9

lnJn "21#

h � h9¦h0J¦h1J1¦= = = � s
�

n�9

hnJn[ "22#

These power!series expansions are substituted in equa!
tions "04#Ð"19#[ After substitution\ one collects the terms
having like powers of J and equates to zero the coe.cient
of each power of J[ Then\ the original boundary value
problem is mapped into a sequence of boundary value
problems which can be solved in succession\ in order
to obtain the coe.cients of the power!series expansions
reported in equations "29#Ð"22#[ A detailed analysis on
the application of perturbation methods in heat transfer
problems can be found\ for instance\ in the book by Aziz
and Na ð05Ł[

The boundary value problem which corresponds to
n � 9 is the following

0
r

d
dr 0r

du9

dr 1� −l9 "23#

du9

dr br�9

� 9\ u9"0# � 9 "24#

g
0

9

u9r dr �
0
1

"25#

0
r

d
dr 0r

du9

dr 1� −0
du9

dr 1
1

"26#

du9

dr br�9

� 9\ u9"0# � −h9 "27#

g
0

9

u9u9r dr � 9[ "28#

Equations "23#Ð"28# are easily solved\ because the func!
tion u9"r# does not a}ect the function u9"r#[ The latter\
together with the constant l9\ is easily determined by
solving equations "23#Ð"25#\ namely
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u9"r# � 1"0−r1#\ l9 � 7[ "39#

By substituting equation "39# in equations "26#Ð"28#\ one
obtains the function u9"r# and the constant h9\ which are
given by

u9"r# � 0
5
−r3\ h9 � 4

5
[ "30#

Equations "29#Ð"22# reveal that u9"r# and u9"r# are the
dimensionless temperature and velocity pro_les in the
case J � 9\ i[e[ in the case of forced convection[ As
expected\ u9"r# is the usual HagenÐPoiseuille velocity pro!
_le of laminar forced convection[ Obviously\ also l9 and
h9 are the values of l and h in the case J � 9[ Therefore\
in this case\ equations "14#\ "39# and "30# yield
Nu � l9:h9 � 37:4 � 8[5\ which is the well known value
of Nu for the case of laminar forced convection discussed
in the Introduction[

The boundary value problem which corresponds to
every n × 9 is the following

0
r

d
dr 0r

dun

dr 1� −
0
3

un−0−ln "31#

dun

dr br�9

� 9\ un"0# � 9 "32#

g
0

9

unr dr � 9 "33#

0
r

d
dr 0r

dun

dr 1� − s
n

j�9

duj

dr
dun−j

dr
"34#

dun

dr br�9

� 9\ un"0# � −hn "35#

s
n

j�9 g
0

9

ujun−jr dr � 9[ "36#

If the functions uj"r# and uj"r# are known for every j such
that 9 ¾ j ¾ n−0\ then equations "31#Ð"36# allow one to
obtain un"r#\ un"r# and the constants ln and hn[ In particu!
lar\ as a consequence of equations "31#Ð"33#\ un"r# and ln

are given by

un"r# �
0
3 g

0

r

0
rý $g

rý

9

un−0"r?#r? dr?% drý¦
ln

3
"0−r1# "37#

ln � −3 g
0

9

r 6g
0

r

0
rý $g

rý

9

un−0"r?#r? dr?% drý7 dr[ "38#

Then\ equations "34#Ð"36# yield un"r# and hn\ namely

un"r# � −hn¦g
0

r

0
rý $g

rý

9

s
n

j�9

duj"r?#
dr?

dun−j"r?#
dr?

r? dr?% drý

"49#

hn � 1 g
0

9

u9"r#r 6g
0

r

0
rý $g

rý

9

s
n

j�9

duj"r?#
dr?

×
dun−j"r?#

dr?
r? dr?% drý7 dr

¦1 g
0

9 $ s
n

j�0

uj"r#un−j"r#% r dr[ "40#

By employing equations "39#\ "30# and "37#Ð"40#\ one
can evaluate the functions un"r#\ un"r# and the constants
ln and hn for any arbitrary n[ Although the expansions of
u"r#\ u"r#\ l and h given by equations "29#Ð"22# consist
of an in_nite number of terms\ in practice one can only
deal with truncated perturbation series[ In particular\ if
only the _rst three terms of each series are considered\
one obtains

u"r# 3 1"0−r1#¦
J
37 0

0
5

−
r1

1
¦

r5

2 1
¦

J1

0425 0
08
349

−
1r1

04
¦

r5

8
−

r09

491 "41#

u"r# 3
0
5

−r3¦
J
85 0

08
079

−r3¦
r7

1 1
¦

J1

01 177 0
122
0789

−
6r3

4
¦r7−

21r01

024 1 "42#

l 3 7¦
J1

02 713
"43#

h 3
4
5

¦
60J

06 179
¦

860J1

12 113 219
[ "44#

3[ Discussion of the results

In this section\ 39!terms perturbation series are
employed to evaluate the dimensionless velocity pro_le
and the dimensionless temperature pro_le[

When a perturbation method is employed\ it is quite
important to determine the domain of the perturbation
parameter J where the perturbation expansions are
regular[ In other words\ one should evaluate or at least
estimate the radius of convergence of the power series
given by equations "29#Ð"22#[ A technique to obtain the
maximum value of J which yields convergent perturba!
tion series is based on the estimate of D|Alembert|s ratio
limit by means of the DombÐSykes plots ð05Ł[

In Figs 1 and 2\ the sequences log09 =ln−0:ln=\
log09 =hn−0:hn=\ log09 =un−0"9#:un"9# = and log09 =un−0"9#:
un"9# = are plotted vs[ 0:n[ These DombÐSykes plots show
that all these sequences have the same limiting value for
n : � and that this limiting value can be estimated as
0[675[ As a consequence\ the radius of convergence of the
perturbation series is 090[675 3 50[ Then\ the perturbation
expansions given by equations "29#Ð"22# can be con!
sidered as regular in the range =J= ³ 50[
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Fig[ 1[ DombÐSykes plots for the perturbation expansions given by equations "21# and "22#[

Fig[ 2[ DombÐSykes plots for the perturbation expansions given by equations "29# and "20# with r � 9[

As a consequence of equation "29#\ the value of u at
r � 9 is given by

u"9# � lim
n:�

Sn"J# "45#

where the partial sum Sn"J# is de_ned as

Sn"J# 0 s
n

j�9

uj"9#Jj[ "46#

Plots of Sn"J# vs[ n are reported in Fig[ 3 for J � 44 and
J � −44[ These plots reveal that the convergence of the
perturbation series is di}erent in the two cases J × 9 and
J ³ 9[ In particular\ the sequence of the partial sums
Sn"J# is monotonic for J � 44\ while this sequence is
oscillating for J � −44[

In Table 0\ values of ln\ hn and un"9# are reported for
n ¾ 29[ These values allow one to evaluate l\ h\ Nu and
Br\ by employing equations "14#\ "16# and "20#Ð"22#[ In
Table 1\ the values of l\ h\ Nu and Br are obtained by

means of 39!terms perturbation series\ for values of J
which lie in the interval −44 ¾ J ¾ 44[ Table 1 reveals
that the buoyancy forces a}ect the dimensionless par!
ameters l\ h\ Nu and Br as follows[ The pressure drop
parameter l is increased both for downward ~ow "J ³ 9#
and for upward ~ow "J × 9#[ The temperature di}erence
ratio h is decreased for J ³ 9 and is increased for J × 9[
On the other hand\ both the Nusselt number Nu and the
Brinkman number Br are increased for downward ~ow
and are decreased for upward ~ow[

To summarize\ for downward ~ow\ the buoyancy e}ect
tends to increase the convection coe.cient and the
pressure drop[ Moreover\ for downward ~ow\ this e}ect
tends to decrease both the bulk temperature and the tem!
perature on the axis of the tube[ On the other hand\ for
upward ~ow\ the bulk temperature\ the temperature on
the axis and the pressure drop are increased by the buoy!
ancy e}ect\ while the convection coe.cient is decreased[
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Fig[ 3[ Plots of Sn"J# vs[ n for J � 44 and for J � −44[

For downward ~ow\ the values of Nu and Br can be
approximated by means of the correlations

Nu � 8[59225¦3[51772 = 09−1 =J=−0[91485 = 09−3 =J=1

"47#

Br � 0[99944¦4[92635 = 09−2 =J=−0[49005 = 09−4 =J=1[
"48#

These correlations can be employed in the range
−44 ¾ J ¾ 9 with a relative error lower than 9[93)[ On
the other hand\ for upward ~ow\ the following cor!
relations for Nu and Br can be employed]

Nu � 8[50653−4[07965 = 09−1J−7[16084 = 09−7J3 "59#

Br � 0[99133−4[75692 = 09−2J−0[2874 = 09−7J3[ "50#

In the range 9 ¾ J ¾ 44\ the values of Nu and Br given
by equations "59# and "50# agree with those obtained by
means of 39!terms perturbation series with a relative
error lower than 9[20)[

In Figs 4Ð6\ the dimensionless velocity pro_le and the

dimensionless temperature pro_le are plotted for J � 44\
J � 39 and J � −44\ respectively[ The plots have been
obtained by employing 39!terms perturbation series[ In
each of these _gures\ a comparison between the behav!
iour of u and u in the case of mixed convection and the
behaviour of u and u in the case of forced convection is
performed[ Figures 4 and 5 reveal that\ for upward ~ow\
the buoyancy e}ect increases the dimensionless velocity
and the dimensionless temperature on the axis\ while this
e}ect decreases both u and u in the neighbourhood of the
wall[ This circumstance is more apparent for J � 44 than
for J � 39[ Indeed\ the ~uid temperature is higher on the
axis than on the wall\ so that the mass density is smaller
on the axis than on the wall[ Therefore\ for J × 9\ the
~ow is assisted by the buoyancy e}ect in the neigh!
bourhood of the axis\ while the ~ow is inhibited near the
wall[ Obviously\ the reverse occurs for J ³ 9[ In fact\
Fig[ 6 shows that\ in the neighbourhood of the axis\ both
u and u are smaller for J � −44 than for J � 9[ On the
other hand\ this _gure reveals that\ near the wall\ both u
and u are increased by the buoyancy e}ect[
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Table 0
Values of ln\ hn and un"9# for n ¾ 29

n ln hn un"9#

9 7 9[7222 9[0555
0 9 3[098×09−2 0[099×09−2

1 6[123×09−4 3[070×09−4 0[992×09−4

2 0[944×09−5 3[725×09−6 0[959×09−6

3 0[328×09−7 4[883×09−8 0[112×09−8

4 0[855×09−09 6[661×09−00 0[387×09−00

5 1[610×09−01 0[930×09−01 0[805×09−02

6 2[708×09−03 0[317×09−03 1[420×09−04

7 4[317×09−05 0[886×09−05 2[317×09−06

8 6[792×09−07 1[724×09−07 3[625×09−08

09 0[022×09−08 3[965×09−19 5[540×09−10

00 0[548×09−10 4[812×09−11 8[358×09−12

01 1[336×09−12 7[573×09−13 0[252×09−13

02 2[524×09−14 0[172×09−14 0[871×09−15

03 4[320×09−16 0[897×09−16 1[896×09−17

04 7[045×09−18 1[744×09−18 3[182×09−29

05 0[120×09−29 3[183×09−20 5[272×09−21

06 0[754×09−21 5[377×09−22 8[433×09−23

07 1[726×09−23 8[734×09−24 0[323×09−24

08 3[229×09−25 0[388×09−25 1[054×09−26

19 5[520×09−27 1[180×09−27 2[171×09−28

10 0[907×09−28 2[401×09−39 3[883×09−30

11 0[457×09−30 4[399×09−31 6[514×09−32

12 1[319×09−32 7[212×09−33 0[057×09−33

13 2[633×09−34 0[175×09−34 0[682×09−35

14 4[794×09−36 0[880×09−36 1[651×09−37

15 8[907×09−38 2[978×09−38 3[152×09−49

16 0[392×09−49 3[792×09−40 5[484×09−41

17 1[077×09−41 6[379×09−42 0[911×09−42

18 2[305×09−43 0[056×09−43 0[477×09−44

29 4[230×09−45 0[712×09−45 1[360×09−46

Regarding Table 1 and Figs 4Ð6\ it can be pointed out
that the changes induced by buoyancy on the velocity
pro_le and on the temperature pro_le are more apparent
in the case of upward ~ow than in the case of downward
~ow[ In any case\ these changes are not substantial unless
=J= u 4[

The following remark could be useful[ The dimen!
sionless velocity pro_le u"r#\ the dimensionless tem!
perature pro_le u"r# and the values of l\ h\ Nu and Br are
uniquely determined by the dimensionless parameter J[
The e}ect of buoyancy is more and more relevant as =J=
increases[ Indeed\ as a consequence of equations "01#Ð
"03#\ J can be expressed as J � M:M9\ where M9 �
pk:"3`b# is a reference mass ~ow rate[ Then\ for a given
value of the mass ~ow rate M\ the value of =J= increases
as M9 decreases[ In other words\ for a prescribed value
of M\ the buoyancy e}ect is more important for ~uids
with a small value of M9\ i[e[ for ~uids with a small
thermal conductivity k and a high coe.cient of thermal
expansion b[ In fact\ if the thermal conductivity is small\

Table 1
Values of l\ h\ Nu and Br for various values of J

J l h Nu Br

−44 7[008 9[5745 00[73 0[122
−49 7[092 9[5837 00[55 0[104
−34 7[976 9[6935 00[37 0[086
−39 7[961 9[6040 00[18 0[067
−24 7[947 9[6151 00[09 0[047
−29 7[934 9[6270 09[89 0[027
−14 7[922 9[6409 09[69 0[006
−19 7[911 9[6537 09[38 0[985
−04 7[902 9[6686 09[17 0[962
−09 7[995 9[6859 09[95 0[949
−4 7[991 9[7027 8[722 0[914

9 7[999 9[7222 8[599 0[999
4 7[991 9[7449 8[248 9[8622

09 7[997 9[7681 8[098 9[8341
04 7[910 9[8953 7[738 9[8045
19 7[930 9[8263 7[466 9[7739
14 7[969 9[8621 7[181 9[7492
29 7[002 0[904 6[880 9[7039
24 7[065 0[955 6[569 9[6634
39 7[155 0[018 6[214 9[6297
34 7[390 0[198 5[835 9[5703
49 7[505 0[211 5[408 9[5125
44 8[993 0[387 5[998 9[4498

the power generated by viscous dissipation within the
~uid is hardly released to the external environment[ As
a consequence\ appreciable temperature di}erences are
present within the ~uid and\ if b is su.ciently high\ the
buoyancy e}ect in~uences both the velocity pro_le and
the temperature pro_le[

A _nal remark on the mathematical model employed
in this paper is as follows[ The bulk temperature Tb has
been employed as the reference temperature in the Bous!
sinesq approximation[ Then\ all the thermophysical
properties k\ a\ m\ b and rb must be evaluated at the
temperature Tb\ which is not known a priori[ As a conse!
quence\ also the value of J � Gr:Re cannot be known a
priori\ so that a trial and error method should be
employed[ In practice\ one could adopt the following
procedure] prescribe the expected value of Tb^ determine
the corresponding values of k\ m\ b and rb^ evaluate J
and DT^ apply the perturbation method to obtain the
temperature di}erence ratio h^ verify if the prescribed
value of Tb is equal to T9¦hDT^ stop if the equality is
satis_ed with an acceptable accuracy\ otherwise restart
the procedure with a new value of Tb[ However\ it should
be pointed out that the mathematical model is based on
the hypothesis that the thermophysical properties rb\ k\
a\ m and b have a very weak dependence on temperature\
so that they can be treated as constants[ Then\ in order
to obtain J and DT\ one can determine the values of the
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Fig[ 4[ Plots of u"r# and u"r# for J � 44 "solid lines# and for J � 9 "dashed lines#[

properties k\ m\ b and rb at the temperature T9 instead of
Tb[ In the range of applicability of the mathematical
model\ the error is expected to be negligible[

4[ Conclusions

The stationary and laminar convection in a vertical
circular tube with a uniform wall temperature has been
studied by taking into account both the viscous dis!
sipation e}ect and the buoyancy e}ect[ It has been
assumed that the velocity _eld is parallel to the axis of
the tube[ The mass ~ow rate has been considered as
prescribed and the bulk temperature has been chosen as
the reference ~uid temperature in the Boussinesq approxi!
mation[ The momentum balance equation and the energy
balance equation have been written in a dimensionless
form such that the dimensionless velocity u and the

dimensionless temperature u are uniquely determined by
the ratio J � Gr:Re[

A perturbation method has been employed to evaluate
the dimensionless velocity u\ the dimensionless tem!
perature u\ the Nusselt number Nu\ the Brinkman num!
ber Br\ the pressure drop parameter l and the tem!
perature di}erence ratio h[ By means of the DombÐSykes
plots\ it has been shown that the perturbation expansions
can be considered as regular in the range =J= ³ 50[ More!
over\ 39!terms perturbation series have been used to
obtain the values of Nu\ Br\ l and h as well as to plot the
functions u"r# and u"r# for some values of J[ It has been
pointed out that the changes induced by the buoyancy
e}ect on u and u are more relevant for upward ~ow than
for downward ~ow[ In any case\ no substantial di}erence
between the forced convection solution and the mixed
convection solution has been found unless =J= u 4[

Also the case of convective boundary conditions with
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Fig[ 5[ Plots of u"r# and u"r# for J � 39 "solid lines# and for J � 9 "dashed lines#[

Fig[ 6[ Plots of u"r# and u"r# for J � −44 "solid lines# and for J � 9 "dashed lines#[
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a given value of the Biot number Bi has been discussed[
It has been pointed out that u\ u\ Nu and Br are inde!
pendent of Bi[ Hence\ the values of u\ u\ Nu and Br for
convective boundary conditions coincide with those for
a prescribed wall temperature[ Indeed\ the latter case
corresponds to a convective boundary condition with
Bi : �[
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