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Abstract

Laminar flow heat transfer in a vertical circular duct is investigated by taking into account both viscous dissipation
and the effect of buoyancy. The temperature on the duct wall is considered as uniform and the velocity field is assumed
to be parallel. A perturbation method is employed to solve the momentum balance equation and the energy balance
equation. The radius of convergence of the perturbation series is evaluated by means of Domb-Sykes plots. A comparison
with the velocity and temperature profiles in the case of laminar forced convection with viscous dissipation is performed
in order to point out the effect of buoyancy. The case of convective boundary conditions is also discussed. © 1999

Elsevier Science Ltd. All rights reserved.

Nomenclature

Bi  =h.Ry/k, Biot number

Br  Brinkman number defined by equation (26)
¢, specific heat at constant pressure

g gravitational acceleration

Gr =8R}gPAt/v*, Grashof number

h. external convection coefficient

j non-negative integer number

k  thermal conductivity

M mass flow rate

M, =mnk/(4gf), reference mass flow rate

n non-negative integer number

Nu Nusselt number defined by equation (24)
p pressure

P =p+pgX, difference between the pressure and the
hydrostatic pressure

r  =R/R,, dimensionless radial coordinate

R radial coordinate

Re =2R,U,/v, Reynolds number

R, radius of the tube

S, partial sum defined by equation (57)

T temperature
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antonio.barletta@mail.ing.unibo.it

T, bulk temperature

T. reference temperature of the external fluid

T, wall temperature

= U/U,,, dimensionless axial velocity

axial component of the velocity field
mean axial velocity

velocity field

axial coordinate.

XGSQ:

Greek symbols

a  =k/(pyc,), thermal diffusivity

P coefficient of thermal expansion

AT =puU?3 [k, reference temperature difference

n =(T,— Ty)/AT, temperature difference ratio

n. =(T,—T.)/AT, external temperature difference ratio
0 =(T—T,)/AT, dimensionless temperature

= —(dP/dX)R}/(uU,,), dimensionless pressure drop
dynamic viscosity

= u/py, kinematic viscosity

= Gr/Re, dimensionless parameter

mass density

p, value of p for T'= T,

ST 0 § I~

1. Introduction

Several papers deal with the effect of frictional heating
on the laminar forced convection in circular tubes. One
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of the earliest investigations on this subject can be found
in the paper by Brinkman [1]. In this paper, the effect of
viscous dissipation is analyzed with reference to thermally
developing forced convection in a pipe either with a uni-
form boundary temperature or with an insulated bound-
ary. Ou and Cheng [2] present a solution for the tem-
perature field in the thermal entrance region of a circular
duct with a uniform boundary heat flux. Lin et al. [3]
obtain the temperature field and the local Nusselt number
for thermally developing forced convection in a pipe with
convective boundary conditions. Moreover, the tem-
perature field and the local Nusselt number are deter-
mined for thermally developing heat transfer by Basu
and Roy [4], both in the case of a uniform boundary heat
flux and in the case of a uniform boundary temperature.
One of the most interesting results pointed out in refs. [3,
4] is that, both for convective boundary conditions and
for a uniform boundary temperature, the Nusselt number
for laminar and thermally developed forced convection
in a circular tube is 48/5 = 9.6. Obviously, this result
holds whenever frictional heating is taken into account,
even if the Brinkman number is very small. As a conse-
quence, the viscous dissipation effect can never be
neglected in the evaluation of the Nusselt number in the
thermally developed region. In fact, as is well known, in
the absence of viscous dissipation, the thermally
developed value of the Nusselt number is 3.6568 for uni-
form boundary temperature [5], while it depends on the
Biot number for convective boundary conditions [6, 7].

The aim of the present paper is to extend the results
for the fully developed region obtained in refs. [3, 4], by
taking into account the effect of buoyancy. Indeed, for
steady and laminar mixed convection in a vertical circular
tube, the momentum and energy balance equations are
coupled with each other and the viscous dissipation term
influences not only the temperature field but also the
velocity field.

In the literature, several studies on the influence of
frictional heating in free convection are available as, for
instance, the papers by Gebhart [8], Turcotte et al. [9]
and Soundalgekar et al. [10]. Moreover, some papers deal
with the internal mixed convection with viscous dissi-
pation. For instance, Igbal et al. [11] consider the fully-
developed combined forced and free convection in a ver-
tical circular tube with a uniform boundary heat flux.
These authors employ three different mathematical tech-
niques for the solution of the coupled momentum and
energy balance equations: an extended Frobenius
method, the Galerkin method and the Runge-Kutta
method. Rokerya and Igbal [12] analyze mixed con-
vection in a vertical annular duct with a uniform heat
flux either on the internal surface or on the external
surface. They obtain the velocity profiles and the tem-
perature profiles by the Runge-Kutta fourth-order
method. More recently, Barletta [13] and Zanchini [14]
have investigated the effect of viscous dissipation for

mixed convection in a parallel-plate vertical channel. In
particular, both the case of symmetric or asymmetric
temperatures prescribed at the channel walls [13] and the
case of convective boundary conditions [14] have been
studied. In these papers, a perturbation method is
employed to solve the momentum balance and energy
balance equations.

To the author’s knowledge, no solution of the problem
of mixed convection with viscous dissipation in a vertical
circular duct with uniform boundary temperature is
available in the literature. In the present paper, this prob-
lem will be solved by means of a perturbation method.
In particular, the velocity and temperature profiles will
be expressed as perturbation series with respect to a
dimensionless parameter which accounts for the
buoyancy effect.

2. Formulation of the problem and governing equations

Let us consider a Newtonian fluid which steadily flows
in an infinitely long vertical tube with radius R,. The flow
is assumed to be laminar and parallel, i.e. the only non-
vanishing component of the velocity field U is the axial
component U. The temperature field on the boundary
R = R, is uniform with a value T,. As it is shown in Fig.
1, the axial coordinate X is directed upward, i.e. it has a
direction opposite to the gravitational acceleration
vector. Since only the axial component of U is non-zero,
the mass balance equation ensures that

ou
ox
As a consequence of equation (1), U depends only on the
radial coordinate R. Let us assume the equation of state

0. (1)

X

M—

-

Fig. 1. Drawing of the system.
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p=po[l=B(T—T)] 2
as well as the Boussinesq approximation. In equation

(2), the reference temperature is the bulk temperature 7},
defined as

2 R
T, = —J UTRdAR (3)
U.R3 Jo
where the mean velocity U, is given by
2 (R
U, = —f URdR. @)
R} Jo

Then, the axial and radial components of the momentum
balance equation can be written as [15]

rory- L 2 4RI 5
Pg(T— b)_pb0X+RdR ar) = ®)
oP
Se=0 ©

where P = p+ p,gXis the difference between the pressure
and the hydrostatic pressure. As a consequence of equa-
tion (6), P depends only on the axial coordinate X. Equa-
tion (5) yields

or _dr, 1 &'
X dX " Bgpy dx?’

@)

Equation (7) implies that d7/0X does not depend on R.
Since 0T/0X is zero at the boundary R = R,, then 07/0X
vanishes everywhere and the temperature 7' depends only
on R. Therefore, equation (3) implies that 7}, does not
depend on X and equation (7) allows one to conclude
that

&p
dx?

=0 ®)

i.e. that dP/d X is a constant. The energy balance equation
can be written as [15]

@ d (pdT v AU ©)
RAR\ "dR) " ¢,\dR)

The boundary conditions on the velocity U and on the
temperature T are

U(Ry) =0, T(Ro) =To. (10)
Moreover, both U and T must not be affected by singu-
larities at R = 0. This condition can be expressed as

dU dT

4R dr =0. (11)

R=0

= b
R=0

Note that, as a consequence of equations (2)—(4), the
mass flow rate M can be expressed as

RU
M = 27[[ pURdR

0

RD RO
=2np,,J URdR—2npbﬁJ (T—-T,)URdR

0 0

Rﬂ
= anbj URdAR = nR}p, U, (12)
0
Let us define the dimensionless quantities
U, T-T, R
““u VT AT 0 TRy
. R} dP  8RigPAT 2R, U,
U, dXC "= 2 ’ oy
T,—-T, _ Gr
T=7AT ° "7 Re 13

where the reference temperature difference AT is given
by
U3,

AT =—-. 14

P (14
Although Gr is always positive, Re and E can be either
positive or negative. In particular, in the case of upward
flow (U, > 0), both Re and E are positive, while, for
downward flow (U, < 0), these dimensionless par-
ameters are negative. As a consequence of equations (13)
and (14), equations (5) and (9)—(11) can be rewritten as

1d/ du =)

1d/ do du\?

m(fa) = —<a> (16)
u(l) =0, 0(1) = —n amn
du -, 40y 18)
dr r=0 ’ dr r=0 - (

Moreover, equations (3), (4) and (13) yield

1
J ulrdr =10 (19)
0

! 1
L urdr = 7 (20)

For any prescribed value of the dimensionless parameter
E, equations (15)—(20) allow one to determine the func-
tions u(r) and 0(r) as well as the constants 4 and 7.
In particular, it is easily verified that the choice Z = 0
corresponds to the absence of buoyancy forces, i.e. to
forced convection.

As a consequence of equations (19) and (20), equation
(15) yields

'od [ du A

By employing equations (17), (18) and an integration by
parts, one can rewrite equation (21) in the form
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U du? A

Then, as a consequence of equations (16) and (18), equa-
tion (22) yields

do A
ar:l =—5 (23)
The Nusselt number is defined as
2R, dT
= — . 24
Nu =17 dr e, @9

Equations (13), (17) and (23) imply that equation (24)
can be rewritten as

R s
“Somar_, T @3)
Moreover, the Brinkman number is defined as
uUs,
B}" = 26
KT(O) ~ 7] 20
so that equations (13), (14) and (17) yield
1
27

Br = .

0(0)+n
If the condition of uniform wall temperature T, is
accomplished by an external convection with a fluid hav-
ing a reference temperature 7, and a heat transfer
coefficient /., then the heat flux per unit area at R = R,
is given by

dT

k=

dR R, = he(TO_Te)' (28)

As a consequence of equations (13) and (23), equation
(28) can be rewritten as

A
2Bi

where the Biot number is given by Bi = h.R,/k, while #,
is a dimensionless parameter such that n, =(7,— T,)/AT.
Obviously, in the limit Bi — oo, equation (29) yields
n = 1., so that the prescribed reference temperature of
the external fluid 7, coincides with the wall temperature.
Then, in the limit Bi — oo, the convective boundary con-
dition collapses to the boundary condition of a prescribed
wall temperature. The mixed convection problem with a
convective boundary condition can be solved as follows.
First, for the given value of Z, equations (15)—(20) yield
the functions u(r), 0(r) as well as the constants 4 and 7.
Then, for the given value of Bi, equation (29) yields the
value of #.. As a consequence, u(r), 0(r), A and n are
independent of Bi. Moreover, on account of equations
(25) and (27), also the values of Nu and Br are indepen-
dent of the Biot number and, hence, they coincide with
the values for Bi — oo, i.e. for a prescribed wall tempera-
ture. Therefore, the fully developed Nusselt number is
independent of Bi not only in the case of forced convec-

e =1+ (29)

tion, as is shown in ref. [3], but also in the case of mixed
convection.

3. Perturbation series solution

In this section, the perturbation method which leads
to a solution of equations (15)—(20) is described.

Let us expand the functions u(r), 0(r) and the constants
4 and 5 as power series in the parameter 2, namely

U0 = )+ OZ+LOF 4 = Y w0 G0)
0() = 00()+ 0, (NE+ 05 (VT 4+ = io 6,V (31)
L= dot A B B = :znan (32)
0N=Ho+MmE+nE + = > n.E" (33)

These power-series expansions are substituted in equa-
tions (15)—(20). After substitution, one collects the terms
having like powers of E and equates to zero the coefficient
of each power of E. Then, the original boundary value
problem is mapped into a sequence of boundary value
problems which can be solved in succession, in order
to obtain the coefficients of the power-series expansions
reported in equations (30)—(33). A detailed analysis on
the application of perturbation methods in heat transfer
problems can be found, for instance, in the book by Aziz
and Na [16].

The boundary value problem which corresponds to
n = 0 is the following

1d/ du,
m(fw) =~ (34
d
ol _ o, w(h=0 (35)
dr|_,
! 1
L uyrdr = 7 (36)
1d/ do, dug\?
rdr(rdr>__<dr> 37)
do
S =0 e =y (38)
r r=0
1
J uyfordr = 0. 39)
0

Equations (34)—(39) are easily solved, because the func-
tion 0,(r) does not affect the function u,(r). The latter,
together with the constant 4, is easily determined by
solving equations (34)—(36), namely
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uy(r) = 2(1—r%), 2y = 8. (40)

By substituting equation (40) in equations (37)—(39), one
obtains the function 0,(r) and the constant 7,, which are
given by

00(r) = L=, ny =2 @1)

Equations (30)—(33) reveal that 0,(r) and u,(r) are the
dimensionless temperature and velocity profiles in the
case Z =0, i.e. in the case of forced convection. As
expected, uy(r) is the usual Hagen—Poiseuille velocity pro-
file of laminar forced convection. Obviously, also 4, and
1, are the values of 4 and # in the case & = 0. Therefore,
in this case, equations (25), (40) and (41) yield
Nu = Ay/n, = 48/5 = 9.6, which is the well known value
of Nu for the case of laminar forced convection discussed
in the Introduction.

The boundary value problem which corresponds to
every n > 0 is the following

1d/ du, 1
75(' dr)i *191,71*/1,, (42)
d

“= 0, u,(1)=0 (43)
dr r=0

1
J u,rdr=20 (44)
0
1d/ do, _ * du; du,_;
rdr (i dr) B _,Z‘O dr dr “5)
do

1o=0, 0,(1)=—n, (46)
dr|_,

n 1

> J u0,_rdr=0. 47)
i=0 Jo

If the functions u,(r) and 0,(r) are known for every j such
that 0 < j < n—1, then equations (42)—(47) allow one to
obtain u,(r), 0,(r) and the constants /, and #,,. In particu-
lar, as a consequence of equations (42)—(44), u,(r) and 4,
are given by

1M1
u,(r) = ZJ o |:J 0, ()1 dr’} dr”+ %(1 —r?) (48)

0

Ay = —4 J] r {J] % |:J’ 0,_,()r dr} dr”}dl: (49)

Then, equations (45)—(47) yield 6,(r) and #,, namely

] " n du/(r/) dl/tnf/(r/) ;1 4
0,(r) = —nn—i-f i [L ,_;) dr 4 dr’ |dr

T

(50)

du, (1
X 7u"_”/(r ) r dr’} dr”} dr
dr

1 n
+2j |:Z u,-(r)@,,,,(r):| rdr. (51)
0 [Li=1

By employing equations (40), (41) and (48)—(51), one
can evaluate the functions u,(r), 0,(r) and the constants
A, and 5, for any arbitrary n. Although the expansions of
u(r), 6(r), A and 5 given by equations (30)—(33) consist
of an infinite number of terms, in practice one can only
deal with truncated perturbation series. In particular, if
only the first three terms of each series are considered,
one obtains

~2(1 42+El i_*_ﬁ
ury =20=r)+ ele =213

52 19 2,2 6 10
+ <——#+r— r—) (52)

15361450 15 " 9 50
1, E/19 L
9(’)=6_’+%<@_’ )
=2 233 7t 3
+12288<1890_7+r - 135) 53)
EZ
/L28+m (54)
e 97152 55
=61 17280 T 23224320 (

4. Discussion of the results

In this section, 40-terms perturbation series are
employed to evaluate the dimensionless velocity profile
and the dimensionless temperature profile.

When a perturbation method is employed, it is quite
important to determine the domain of the perturbation
parameter Z where the perturbation expansions are
regular. In other words, one should evaluate or at least
estimate the radius of convergence of the power series
given by equations (30)—(33). A technique to obtain the
maximum value of E which yields convergent perturba-
tion series is based on the estimate of D’Alembert’s ratio
limit by means of the Domb—Sykes plots [16].

In Figs 2 and 3, the sequences log|4,_ /4.l
logio [7,—1/1al> 1ogy lt4,—1(0)/u,(0)] and log,o10,—,(0)/
0,(0)| are plotted vs. 1/n. These Domb—Sykes plots show
that all these sequences have the same limiting value for
n — oo and that this limiting value can be estimated as
1.786. As a consequence, the radius of convergence of the
perturbation series is 10"7% =~ 61. Then, the perturbation
expansions given by equations (30)—(33) can be con-
sidered as regular in the range |E| < 61.
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Fig. 2. Domb-Sykes plots for the perturbation expansions given by equations (32) and (33).
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Fig. 3. Domb-Sykes plots for the perturbation expansions given by equations (30) and (31) with » = 0.

As a consequence of equation (30), the value of u at
r = 0is given by

u(0) = lim S,(2) (56)

where the partial sum S,(E) is defined as

M:

S,(3) = |

J

1, (0)Z. (57)

Plots of S,(E) vs. n are reported in Fig. 4 for 2 = 55 and
E = —55. These plots reveal that the convergence of the
perturbation series is different in the two cases 2 > 0 and
2 < 0. In particular, the sequence of the partial sums
S,(E) is monotonic for E = 55, while this sequence is
oscillating for & = —55.

In Table 1, values of 4,, 1, and 0,(0) are reported for
n < 30. These values allow one to evaluate A, #, Nu and
Br, by employing equations (25), (27) and (31)—(33). In
Table 2, the values of 4, 1, Nu and Br are obtained by

means of 40-terms perturbation series, for values of E
which lie in the interval —55 < E < 55. Table 2 reveals
that the buoyancy forces affect the dimensionless par-
ameters A, #, Nu and Br as follows. The pressure drop
parameter / is increased both for downward flow (2 < 0)
and for upward flow (2 > 0). The temperature difference
ratio 7 is decreased for E < 0 and is increased for E > 0.
On the other hand, both the Nusselt number Nu and the
Brinkman number Br are increased for downward flow
and are decreased for upward flow.

To summarize, for downward flow, the buoyancy effect
tends to increase the convection coefficient and the
pressure drop. Moreover, for downward flow, this effect
tends to decrease both the bulk temperature and the tem-
perature on the axis of the tube. On the other hand, for
upward flow, the bulk temperature, the temperature on
the axis and the pressure drop are increased by the buoy-
ancy effect, while the convection coefficient is decreased.
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Fig. 4. Plots of S,(E) vs. n for E = 55 and for £ = —55.

For downward flow, the values of Nu and Br can be
approximated by means of the correlations

Nu = 9.60336+4.62883 - 107%|2| —1.02596 - 10~ *|5|?
(58)
Br = 1.00055+5.03746 - 10 *|2| — 1.50116 - 10~ *| 2|2,
(59)
These correlations can be employed in the range
— 55 < E < 0 with a relative error lower than 0.04%. On

the other hand, for upward flow, the following cor-
relations for Nu and Br can be employed:

Nu=9.61764—5.18076-10"*E—8.27195- 10~ *E* (60)

Br =1.00244—5.86703-107°2—1.3985- 10~ *E*.  (61)

—

In the range 0 < E < 55, the values of Nu and Br given
by equations (60) and (61) agree with those obtained by
means of 40-terms perturbation series with a relative
error lower than 0.31%.

In Figs 5-7, the dimensionless velocity profile and the

dimensionless temperature profile are plotted for = = 55,
Z =40 and E = — 55, respectively. The plots have been
obtained by employing 40-terms perturbation series. In
each of these figures, a comparison between the behav-
iour of u and 0 in the case of mixed convection and the
behaviour of u and 0 in the case of forced convection is
performed. Figures 5 and 6 reveal that, for upward flow,
the buoyancy effect increases the dimensionless velocity
and the dimensionless temperature on the axis, while this
effect decreases both u and 6 in the neighbourhood of the
wall. This circumstance is more apparent for E = 55 than
for Z = 40. Indeed, the fluid temperature is higher on the
axis than on the wall, so that the mass density is smaller
on the axis than on the wall. Therefore, for Z > 0, the
flow is assisted by the buoyancy effect in the neigh-
bourhood of the axis, while the flow is inhibited near the
wall. Obviously, the reverse occurs for E < 0. In fact,
Fig. 7 shows that, in the neighbourhood of the axis, both
u and 0 are smaller for E = — 55 than for E = 0. On the
other hand, this figure reveals that, near the wall, both u
and 0 are increased by the buoyancy effect.
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Table 1
Values of 4,, 1, and 0,(0) for n < 30

Table 2
Values of A, 5, Nu and Br for various values of 2

n . N 0,(0) = A n Nu Br
0 8 0.8333 0.1666 —55 8.119 0.6856 11.84 1.233
1 0 4.109 x 1073 1.100 x 1073 —50 8.103 0.6948 11.66 1.215
2 7.234%x107° 4.181x10°° 1.003x10°° —45 8.087 0.7046 11.48 1.197
3 1.055x10°° 4.836x 1077 1.060 x 1077 —40 8.072 0.7151 11.29 1.178
4 1.439x10°* 5.994x107° 1.223x107° —35 8.058 0.7262 11.10 1.158
5 1.966 x 10~ '° 7.772x 107" 1.498 x 10~ —30 8.045 0.7381 10.90 1.138
6 2.721x 10712 1.041 x 10712 1.916 x 1071 —25 8.033 0.7510 10.70 1.117
7 3.819x10° " 1.428 x 10~ 2.531x10°" —20 8.022 0.7648 10.49 1.096
8 5.428 x 1071 1.997 x 10~ '¢ 3.428 x 107" —15 8.013 0.7797 10.28 1.073
9 7.803x10°'8 2.835x10° '8 4736 x 10" —10 8.006 0.7960 10.06 1.050
10 1.133x 107" 4.076 x10~>° 6.651x10~% -5 8.002 0.8138 9.833 1.025
11 1.659 x 102! 5.923x 1072 9.469 x 10~ 0 8.000 0.8333 9.600 1.000
12 2.447x10°% 8.684 x 10~ 1.363x 1072 5 8.002 0.8550 9.359 0.9733
13 3.635x 107> 1.283x 107> 1.982x 1072¢ 10 8.008 0.8792 9.109 0.9452
14 5.431x107% 1.908 x 10~%7 2.907 x 10~ 15 8.021 0.9064 8.849 0.9156
15 8.156 x 10~ 2.855x10°% 4.293x 107 20 8.041 0.9374 8.577 0.8840
16 1.231x10°% 4294 x 10~ 6.383x 1073 25 8.070 0.9732 8.292 0.8503
17 1.865x 10~ % 6.488 x 1073 9.544 x 1073 30 8.113 1.015 7.991 0.8140
18 2.837x 107 9.845x10°% 1.434x10°% 35 8.176 1.066 7.670 0.7745
19 4.330x 1073 1.499 x 1073¢ 2.165x 10~ 40 8.266 1.129 7.325 0.7308
20 6.631x 1073 2.291x 1073 3.282x107% 45 8.401 1.209 6.946 0.6814
21 1.018 x10°% 3.512x10°% 4.994x 104 50 8.616 1.322 6.519 0.6236
22 1.568 x 10~ 5.400 x 10~ 7.625x10°% 55 9.004 1.498 6.009 0.5509
23 2420x10°% 8.323x107% 1.168 x 10~*
24 3.744 x10~% 1.286 x 10~% 1.793 x 104
25 5.805x10~% 1.991 x 10~ 2.762x10~4
26 9.018 x10~% 3.089 x 10~ 4.263x 10
27 1.403x 10~ 4.803x 107! 6.595x 10~ the power generated by viscous dissipation within the
28 2,188 x 107 7.480x 107 1.022x 107 fluid is hardly released to the external environment. As
29 3416x 107 1.167x 10~ 1.588 > 10 a consequence, appreciable temperature differences are
30 5.341 x 107 1.823x1073¢ 2471 x 1077

Regarding Table 2 and Figs 5-7, it can be pointed out
that the changes induced by buoyancy on the velocity
profile and on the temperature profile are more apparent
in the case of upward flow than in the case of downward
flow. In any case, these changes are not substantial unless
IE] = 5.

The following remark could be useful. The dimen-
sionless velocity profile u(r), the dimensionless tem-
perature profile 0(r) and the values of 4, , Nu and Br are
uniquely determined by the dimensionless parameter E.
The effect of buoyancy is more and more relevant as |E|
increases. Indeed, as a consequence of equations (12)—
(14), E can be expressed as E = M/M,, where M, =
nk/(4gf) is a reference mass flow rate. Then, for a given
value of the mass flow rate M, the value of |Z| increases
as M, decreases. In other words, for a prescribed value
of M, the buoyancy effect is more important for fluids
with a small value of M, i.e. for fluids with a small
thermal conductivity k& and a high coefficient of thermal
expansion f5. In fact, if the thermal conductivity is small,

present within the fluid and, if f is sufficiently high, the
buoyancy effect influences both the velocity profile and
the temperature profile.

A final remark on the mathematical model employed
in this paper is as follows. The bulk temperature 7, has
been employed as the reference temperature in the Bous-
sinesq approximation. Then, all the thermophysical
properties k, a, u, f and p, must be evaluated at the
temperature T, which is not known a priori. As a conse-
quence, also the value of E = Gr/Re cannot be known a
priori, so that a trial and error method should be
employed. In practice, one could adopt the following
procedure: prescribe the expected value of T}; determine
the corresponding values of k, p, f# and p,; evaluate E
and AT; apply the perturbation method to obtain the
temperature difference ratio #; verify if the prescribed
value of Ty is equal to T,+nAT; stop if the equality is
satisfied with an acceptable accuracy, otherwise restart
the procedure with a new value of T},. However, it should
be pointed out that the mathematical model is based on
the hypothesis that the thermophysical properties p,, k,
o, pand f have a very weak dependence on temperature,
so that they can be treated as constants. Then, in order
to obtain Z and AT, one can determine the values of the
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Fig. 5. Plots of u(r) and 0(r) for E = 55 (solid lines) and for & = 0 (dashed lines).

properties k, p, f and p, at the temperature 7, instead of
T,. In the range of applicability of the mathematical
model, the error is expected to be negligible.

5. Conclusions

The stationary and laminar convection in a vertical
circular tube with a uniform wall temperature has been
studied by taking into account both the viscous dis-
sipation effect and the buoyancy effect. It has been
assumed that the velocity field is parallel to the axis of
the tube. The mass flow rate has been considered as
prescribed and the bulk temperature has been chosen as
the reference fluid temperature in the Boussinesq approxi-
mation. The momentum balance equation and the energy
balance equation have been written in a dimensionless
form such that the dimensionless velocity u and the

dimensionless temperature 0 are uniquely determined by
the ratio E = Gr/Re.

A perturbation method has been employed to evaluate
the dimensionless velocity u, the dimensionless tem-
perature 0, the Nusselt number Nu, the Brinkman num-
ber Br, the pressure drop parameter 4 and the tem-
perature difference ratio #. By means of the Domb—Sykes
plots, it has been shown that the perturbation expansions
can be considered as regular in the range |E| < 61. More-
over, 40-terms perturbation series have been used to
obtain the values of Nu, Br, 2 and n as well as to plot the
functions u(r) and 0(r) for some values of Z. It has been
pointed out that the changes induced by the buoyancy
effect on u and 0 are more relevant for upward flow than
for downward flow. In any case, no substantial difference
between the forced convection solution and the mixed
convection solution has been found unless |Z]| = 5.

Also the case of convective boundary conditions with
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a given value of the Biot number Bi has been discussed.
It has been pointed out that u, 6, Nu and Br are inde-
pendent of Bi. Hence, the values of u, 6, Nu and Br for
convective boundary conditions coincide with those for
a prescribed wall temperature. Indeed, the latter case
corresponds to a convective boundary condition with
Bi— 0.
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